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Abstract
We obtain the necessary and sufficient conditions for linearizability
(isochronicity) of three families of eight-parametric cubic systems. This
completes the classification of the linearizable systems studied by Romanovski
and Robnik (2001 J. Phys. A: Math. Gen. 34 10267–92).

PACS numbers: 02.60.Lj, 45.05.+x

The study of isochronous oscillations goes back at least to Huygens, who investigated the
motion of cycloidal pendulum. Later on, isochronous systems were studied by Euler,Bernoulli,
Lagrange and others. At present, the problem of isochronicity again attracts increasing interest;
see, for example, [1–4, 8, 9] and references therein.

In [8] the eight-parametric subfamilies of the cubic system

ẋ = x(1 − a10x − a01y − a−12x
−1y2 − a20x

2 − a11xy − a02y
2 − a−13x

−1y3)

ẏ = −y(1 − b2,−1x
2y−1 − b10x − b01y − b3,−1x

3y−1 − b20x
2 − b11xy − b02y

2)

such that in the first equation one of the coefficients (a10, a01, a−12) is different from zero and
one of the coefficients (a20, a11, a02, a−13) is equal to zero. The second equation is obtained
from the first after the involutions

aij ↔ bji x ↔ y (1)

are taken into account. There are twelve such eight-parametric systems. Ten of these
cases were considered in [8], and a complete set of necessary and sufficient conditions for
linearizability was obtained for nine of these. The two remaining systems are

ẋ = x(1 − a01y − a11xy − a02y
2 − a−13x

−1y3)

ẏ = −y(1 − b10x − b3,−1x
3y−1 − b20x

2 − b11xy)
(2)
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and

ẋ = x(1 − a10x − a20x
2 − a02y

2 − a−13x
−1y3)

ẏ = −y(1 − b01y − b3,−1x
3y−1 − b20x

2 − b02y
2)

(3)

which were omitted from the classification as the computational difficulties proved insuperable
at the time.

In the present paper, we obtain the necessary and sufficient conditions of linearizability
of a centre for both systems. Furthermore, we complete the classification of the remaining
case of [8].

Recall that the origin of the real system

u̇ = −v + U(u, v) v̇ = u + V (u, v) (4)

is a centre if all trajectories in its neighbourhood are closed and it is an isochronous centre if
the period of oscillation is the same for all these trajectories. We assume here that U(u, v)

and V (u, v) are analytic series without constant or linear terms.
It has been shown by Poincaré and Lyapunov that the system (4) has a formal Lyapunov

first integral of the form

�(u, v) = u2 + v2 +
∞∑

l+j=3

φl,ju
lvj

if and only if the origin is a centre on the real plane u, v. Then, the integral is analytical and,
according to Vorob’ev’s theorem [10, 1], the centre is isochronous if and only if the system
(4) is linearizable (in this case also the formal transformation is necessarily analytic).

Using the complex variables x = u + iv we can write the system (4) as a single equation

ẋ = i(x + X(x, x̄)) (5)

where X(x, x̄) = ∑
k+l�2 Xklx

kx̄l . It is convenient to consider x̄ as an independent variable,
x̄ = y, then from equation (5) we obtain the more general complex system

ẋ = i(x + X(x, y)) ẏ = −i(y + Y (x, y)) (6)

where X(x, y) = ∑∞
k+l=2 Xklx

kyl , Y (x, y) = ∑∞
k+l=2 Yklx

kyl, are series convergent in a
neighbourhoodof the origin. This system is equivalent to equation (5) when x = ȳ, Xij = Ȳ ji .
After a change of time, idt = dτ , we obtain the system

dx/dτ = x + X(x, y) = X̂(x, y) dy/dτ = −y − Y (x, y) = Ŷ (x, y). (7)

We say that system (7) is linearizable (isochronous) if there is an analytic change of coordinate
in the neighbourhood of the origin making the system linear. We look for such transformation
in the form

x1 = x +
∑

k+j�2

H
(1)

kj xkyj = Ĥ (1)(x, y)

y1 = y +
∑

k+j�2

H
(2)

kj xkyj = Ĥ (2)(x, y)
(8)

so that ẋ1 = x1, ẏ1 = −y1. The functions Ĥ (1), Ĥ (2) must therefore satisfy the following
equations:

Ĥ (1)(x, y) = ∂Ĥ (1)

∂x
ẋ +

∂Ĥ (1)

∂y
ẏ −Ĥ (2)(x, y) = ∂Ĥ (2)

∂x
ẋ +

∂Ĥ (2)

∂y
ẏ. (9)

Equating the coefficients of the monomials xkyj in these identities, we can determine
uniquely the coefficients H

(1)
kj ,H

(2)
jk , when j −k �= 1. When j −k = 1 we obtain compatibility



Letter to the Editor L147

conditions 0 · H
(1)
k,k+1 = ikk(X, Y ), 0 · H

(2)
k+1,k = jkk(X, Y ), where ikk(X, Y ), jkk(X, Y ) are

polynomials of the coefficients Xlj , Ylj such that l + j � 2k; see, for example, [8] for more
details. We call these polynomials the linearizability (isochronicity) quantities. Therefore,
the system is linearizable if and only if the infinite series of the conditions

i11(X, Y ) = j11(X, Y ) = · · · = ikk(X, Y ) = jkk(X, Y ) = · · · = 0 (10)

is satisfied. The conditions (10) are the necessary conditions of linearizability. Finding these
conditions is the first step in the study of the linearizability problem. The second step is to
check whether the necessary conditions obtained are also sufficient. One of the most powerful
tools to carry out this second step is the Darboux linearization method.

Definition 1. We call a change of variables

x1 = F1(x, y) y1 = F2(x, y) (11)

of the system (7), a Darboux linearization, if it transforms the system to a linear system,
ẋ1 = x1, ẏ1 = −y1, and is such that at least one of the functions, F1, F2, is of the form
F = f

α1
1 · · · f αk

k , where the curves fi(x, y) = 0 determine invariant algebraic curves of
the system (7), and αj are complex numbers. In more detail, the polynomials fi satisfy the
equation

∂fi

∂x
X̂ +

∂fi

∂y
Ŷ = Kifi (12)

for some polynomials Ki(x, y), called the co-factors of the invariant curves fi(x, y) = 0.

It is easily seen that if

X̂(x, y)/x +
k∑

i=1

αiKi = 1 (13)

then the substitution x1 = xf
α1

1 · · ·f αk

k , linearizes the first equation, i.e. brings it into ẋ1 = x1.
If

Ŷ (x, y)/y +
k∑

i=1

αiKi = −1 (14)

then the change y1 = yf
α1
1 · · · f αk

k brings the second equation of (7) to ẏ1 = −y1.
If, for system (7), only one of the conditions (13) and (14) is satisfied, say (14), and (7)

has a Lyapunov first integral �(x, y) of the form

�(x, y) = xy +
∞∑

k+l=3

vklx
kyl (15)

then system (7) is linearizable by the substitution x1 = �(x, y)/F2(x, y), y1 = F2(x, y).

Similarly, if condition (13) takes place, then the linearizing transformation is given by
x1 = F1(x, y), y1 = �(x, y)/F1(x, y), as can be verified by a straightforward calculation [4],
once it is observed that F2(x, y) (F1(x, y)) must divide �(x, y) and so the transformations
are well defined.

Given an ideal J we denote by V(J ) the variety (the set of all common zeros of polynomials
from J ) of J .

Definition 2. Let I = 〈i11, j11, i22, j22, . . . , ikk, jkk, . . .〉 be the ideal generated by focus
quantities of system (7). The variety of the ideal I, VL = V(I), is called the linearizability
variety of system (7).
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Any system with coefficients from VL is linearizable in a neighbourhood of the origin by
a convergent substitution of the form (8).

We now tackle the remaining two cases (2) and (3). To do so, we need the following
proposition.

Lemma 1. The system

ẋ = x(1 − x − a20x
2) ẏ = −y(1 − y − b3,−1x

3y−1 − b20x
2) (16)

has a first integral of the form

H =
∞∑

m=1

Hm(y)xm (17)

where H1 = y

y−1 , and for m = 6k + s � 1

H6k+s(y) =




H1(y)6k+sP5k+[ s−1
2 ](y)

y8k+s−1
when s = 1, 2, 3

H1(y)6k+sP5k+[ s+1
2 ](y)

y8k+s
when s = 4, 5, 6

(18)

(here and below we denote by Pi any polynomial of degree at most i and by [a] the integer
part of a).

Proof. The system (16) is similar to the system (47) from [8], namely, to

ẋ = x(1 − a10x − a20x
2) ẏ = −y(1 − b01y − b3,−1x

3y−1) (19)

(but system (16) contains the additional term b20yx2 in the second equation). It turns out that
the way of construction of the integral (17) used in [8] can be transferred to the system (16).

Let us expand the equation of trajectories (16) into the power series dx
dy

= ∑∞
i=0 aix

i. It is
easily seen that the coefficients ai are of the form

a6k+1 = Q2k+1(y)

(1 − y)3k+1y2k+1
a6k+2 = Q2k(y)

(1 − y)3k+1y2k+1
a6k+3 = Q2k+1(y)

(1 − y)3k+2y2k+1

a6k+4 = Q2k+1(y)

(1 − y)3k+2y2k+2
a6k+5 = Q2k(y)

(1 − y)3k+3y2k+2
a6k+6 = Q2k+1(y)

(1 − y)3k+3y2k+2

where k = 0, 1, 2, . . . and Qm(y) denotes a polynomial in y of degree at most m.
The coefficients Hi of the series (17) should satisfy the differential equations

H ′
1 + a1H1 = 0

........................

H ′
k + ka1Hk = fk

........................

(20)

where fk = −(k − 1)a2Hk−1 − (k − 2)a3Hk−2 − · · · − akH1. From the first six equations we
obtain

H1 = y

y − 1
H2 = −H 2

1

y
H3 = H 3

1 P2(y)

y3
(21)

H4 = H 4
1 P2(y)

y4
H5 = H 5

1 P3(y)

y5
H6 = H 6

1 P3(y)

y6
.
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We prove that the coefficients Hm have the form (18) by induction on k. According to
equation (21) for k = 0 equation (18) holds. Let us suppose that the formula is proven for
k < m and consider the case k = m. Note that

Hr(y) = H1(y)r
∫ y

fr (u)H1(u)−r du (22)

where fr = − ∑r−1
i=1 (r − i)ai+1Hr−i , and∫ y Ps(u)

un
du = Ps(y)

yn−1
(23)

when n > s + 1. (The polynomials Ps on the right-hand and left-hand sides of (23) are
different, but only the degree is important for us, so we use the same notation Ps for any
polynomial of the degree s.) Using equation (22) for k = m we have

H6m+s(y) = −H1(y)6m+s

∫ y
(

6m+s∑
i=2

(6m + s + 1 − i)ai(u)H6m+s+1−i(u)

)
H1(u)−6m−s du.

To prove equation (18) it is sufficient to show that

∫ y

a6k+l(u)H6m+s+1−6k−l(u)H1(u)−6m−s du =




P5m+[ s−1
2 ](y)

y8m+s−1
when s = 1, 2, 3

P5m+[ s+1
2 ](y)

y8m+s
when s = 4, 5, 6.

(24)

for l = 1, 2, 3, 4, 5, 6. Let us consider the case l = 1. Then

∫ y

a6k+1(u)H6m+s−6k(u)H1(u)−6m−s du =




P5m(y)

y8m+s−1
when s = 1, 2

P5m+1(y)

y8m+s−1
when s = 3

P5m+2(y)

y8m+s
when s = 4

P5m+3(y)

y8m+s
when s = 5, 6.

(25)

in agreement with equation (24). Similarly, we can check that equation (24) holds for
l = 2, 3, 4, 5, 6. �

Theorem 1.

(1) The linearizability variety of system (2) is V(Ĩ ) = V(J̃ 1) ∪ V(J̃ 2), where J̃ 1 =
〈b10, a01b10 + b11, b20, b3,−1, a11 − b11〉, J̃ 2 = 〈a01b10 + b11, a−13, a02, a11 − b11, a01〉.

(2) The linearizability variety of system (3) consists of seven irreducible components, V(I) =
∪7

i=1V(J7), where J1 = 〈b01, b20, a−13, 3a02 + b02, a20, a10〉, J2 = 〈
a10, b01, 112b3

20 +
27b2

3,−1b02, 49a−13b
2
20 − 9b3,−1b

2
02, 21a−13b3,−1 + 16b20b02, 343a2

−13b20 + 48b3
02,

7a02 + 3b02, 3a20 + 7b20
〉
, J3 = 〈b01, b02, b3,−1, a02, a20 + 3b20, a10〉, J4 =

〈b3,−1, a−13, a02 + b02, a20 + b20〉, J5 = 〈b20, b3,−1, a−13, a02〉, J6 = 〈b20, b3,−1, a20〉,
J7 = 〈b02, a−13, a02〉.

Proof. (1) By means of the algorithm from [8] we have computed the first twelve
isochronicity quantities i11, j11, . . . , i66, j66. Romanovski and Robnik [8] tried to find the
irreducible decomposition of the isochronicity varieties of systems (2) and (3) using the
routine primdecGTZ of Singular 2-0-0 [6], but they did not succeed. We use the more recent
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version Singular 2-0-3 and, by means of the procedure minAssGTZ, we found that the minimal
associate primes of the ideal generated by these quantities are J̃ 1 and J̃ 2.

Obviously, it is sufficient to consider one of the varieties V(J̃ 1), V(J̃ 2), because they are
mapped to each other by the involution (1). The systems from V(J̃ 1) are of the form

ẋ = x − a01xy − a02xy2 − a−13y
3 ẏ = −y. (26)

According to theorem 6 of [7], system (26) is time reversible for any parameter values,
therefore it admits a first integral �(x, y) of the form (15) and because the second equation
of the system is linear the system is linearizable by means of the transformation

x1 = �(x, y)/y y1 = y.

(2) For system (3) i11 = j11 = 0, so we have used the ideal I7 = 〈i22, j22, . . . , i77, j77〉.
Again, making use of minAssGTZ we found that the minimal associate primes of I7 are the
ideals J1, . . . , J7 given above. So, we only have to show that any system from V(Ji) (for all
i = 1, . . . , 7) is linearizable.

For systems from V(J1), V(J2), V(J3) the linearizing substitutions are presented in [4]
(theorem 4.1) and systems from V(J4), V(J5) are subfamilies of the system VIII of [8,
p 10 278] (the systems (2) and (3) of VIII, respectively). Therefore, it remains to consider the
component V(J7) (V(J6) is mapped to V(I7) by (1)), which means systems of the form

ẋ = x(1 − a10x − a20x
2) ẏ = −y(1 − b01y − b3,−1x

3y−1 − b20x
2). (27)

When a10b01 �= 0, the transformation x → a10x, y → b01y brings (27) to (16). The latter
system has two invariant lines

l1 = 1 − x

2
−

√
1 + 4a20x

2
l2 = 1 − x

2
+

√
1 + 4a20x

2
with the corresponding co-factors

K1 = −x(1 +
√

1 + 4a20 + 2a20x)

2
K2 = −x(1 − √

1 + 4a20 + 2a20x)

2
.

Equation (13) has the solution

α1 = −1 − √
1 + 4a20

2
√

1 + 4a20
α2 = 1 − √

1 + 4a20

2
√

1 + 4a20
.

Therefore the substitution

x1 = xl
α1
1 l

α2
2

linearizes the first equation.
According to lemma 1, system (3) has a first integral of the form (17). Due to proposition

2 of [5], this yields the existence of a first integral �(x, y) of the form (15). Therefore, the
second equation is linearizable by the substitution

y1 = �(x, y)
/(

xl
α1
1 l

α2
2

)
.

Obviously, the Zariski closure of V(J7)\V(〈a10b01〉) is equal to V(J7). Therefore, any
system from V(J7) is linearizable. �

Finally, we complete the classification of the one family of systems left outstanding from
[8]. In theorem 3 of [8], there are two cases, (V)-(4) and (V)-(9), in which the authors could
not show that the conditions were sufficient for linearizability of the system. These two cases
are, in fact, dual under the transformation (1), so we only need to consider the first of these.

Taking a = a−13 and b = b10, the systems in class (V)-(4) can be written as

ẋ = x − 9bx3 − ay3 ẏ = −y + bxy − 6b2x2y. (28)
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(There is a misprint in the conditions (V)-(4) of [8]; it should be a20−9b2
10 instead of a20−9b2

01.
The other case is stated correctly.)

We first perform the transformation

Y = y3(1 − 3bx)−2 X = x − a

4
Y (29)

to bring the system (28) to the form

Ẋ = X + 3bX2 + 9
2abXY + 39

16a2bY 2 Ẏ = −3Y − 6abY 2 (30)

after scaling by the factor (1−3bx). This system has a first integral in terms of hypergeometric
functions from [3], proposition 4.15 (i). Using equation (29) to pull back the first integral
of (30) to (28), we see that the original system must also be integrable. It is also clear
from equation (30) that the line 1 + 2abY = 0 is an invariant curve of the transformed
system, whence f = (1 − 3bx)2 + 2aby3 = 0 gives an invariant curve of (28) with co-factor
−6bx − 18b2x2.

Since equation (28) is integrable, there is a first integral of the form (15), � = xy + · · ·.
This means that equation (28) can be written as

ẋ = r�y ẏ = −r�x (31)

for some analytic function r = 1 + · · · of x and y. Eliminating � in equation (31) gives us

ṙ = r div(ẋ, ẏ) = r(bx − 33b2x2). (32)

We can therefore construct a function

ỹ = yf 1/8r−1/4 (33)

with ˙̃y = −ỹ. As above, we can take x̃ = �/ỹ, which satisfies ˙̃x = x̃, and the system (28) is
linearizable.
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Appendix

To compute the linearizability quantities for systems (2) and (3) we can use the Mathematica
code from [8, p 10291] with the two first lines replaced, respectively, by

11 [nu1 , nu2 , nu3 , nu4 , nu5 , nu6 , nu7 , nu8 ] := 0 nu1 + 1 nu2 + 0 nu3

− 1 nu4 + 3 nu5 + 2 nu6 + 1 nu7 + 1 nu8;
12 [nu1 , nu2 , nu3 , nu4 , nu5 , nu6 , nu7 , nu8 ] := 1 nu1 + 1 nu2 + 2 nu3

+ 3 nu4 − 1 nu5 + 0 nu6 + 1 nu7 + 0 nu8;
and

11 [nu1 , nu2 , nu3 , nu4 , nu5 , nu6 , nu7 , nu8 ] := 1 nu1 + 2 nu2 + 0 nu3

− 1 nu4 + 3 nu5 + 2 nu6 + 0 nu7 + 0 nu8;
12 [nu1 , nu2 , nu3 , nu4 , nu5 , nu6 , nu7 , nu8 ] := 0 nu1 + 0 nu2 + 2 nu3

+ 3 nu4 − 1 nu5 + 0 nu6 + 2 nu7 + 1 nu8;



L152 Letter to the Editor

References

[1] Amelkin V V, Lukashevich N A and Sadovskii A P 1982 Nonlinear Oscillations in Second Order Systems (in
Russian) (Minsk: BSU)

[2] Chavarriga J and Sabatini M 1999 Survey of isochronous centers Winter School on Polynomial Vector Fields
(Lleida, 11–12 December) Qual. Theory Dyn. Syst. 1 1–70
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